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1 Maxwell’s Equations

Maxwell I was derived from Coulomb’s law,

v.E=" (MI)
€0

Maxwell IT was derived from the concept of there being no magnetic monopoles,
V- -B=0. (MII)
From Faraday’s law, induced emf due to a changing magnetic flux is given by

_9on
ot

Maxwell III was derived from Faraday’s law,

0B
EFE=—— MIII
V x T ( )

Consider a solenoid connected to a current source, a loop passes around the solenoid and is con-
nected to a voltmeter. The magnetic field outside the solenoid is negligible. If the magnetic field
inside the solenoid varies with time, there is a potential difference measured in the loop. Conversely,
we can consider the voltage induced in a loop of wire moving through a uniform magnetic field.

We use Ampere’s law,
§Ba—pr. 2)

and consider a correction to it for a capacitor along a current carrying wire to derive Maxwell IV,

OF
V x B = ppgd + /‘60505. (MIV)

Helmholtz’s theorem states that the divergence and curl of a vector field are sufficient to fully
specify the field.

1.1 Two Useful Theorems

The Divergence theorem states
/(V-E)dV:/E-dS, (3)
\% S

where V' is the volume bounded by surface S.

Stoke’s Theorem states

/S(VXE)-dS:f;E-dl, (4)

where S is the surface bounded by closed path s.



Note that, when taking these integrals, it is important to consider the direction taken, otherwise
you may be a factor of -1 off. Path integrals require compatible orientation between the path and
the surface (see mathematical methods notes), and it is convention for surface integrals to have the
vector surface element pointing out of the enclosed volume.

In addition, the divergence theorem requires the surface to be closed.

A useful vector identity is
V x(V xa)=V(V-a)-Va (5)

for any vector field a sufficiently integratable.

2 Electromagnetic Waves in a Vacuum

2.1 Plane Waves

In a vacuum, Maxwell’s equations lead us to

0’E
V’E = HOE0 5
V2B = e 0°B
Moo 12
These have solutions as plane waves,
E(r,t) = Egexpi(k - r — wt) (7)
B(r,t) = Boexpi(k-r —wt (8)

In a vacuum, E, k, B are orthogonal, By = Ey/c, and Eg x By gives the direction of k, the direction
of propagation. Substituting in these solutions give the dispersion relation for light in a vacuum

ook = = L (9)
HoED 7 0k pogo

2.2 The Continuity Equation

Taking the divergence of Maxwell IV, and using V - (V x B) = 0 generally, we find the continuity
equation in integral form,
0
J-dS=—-—— dV. 10
/ -y (10)
This is equivalent to conservation of charge, the charge flowing out through the surface per second
is equal to the change in total charge inside the volume per second. Maxwell’s equations require
conservation of charge.



3 Special Relativity

Einstein considered two seemingly equivalent scenarios, relating to a current carrying wire sta-
tionary relative to the lab frame, and a positive test charge also stationary relative to the lab
frame.

1. An observer P sat on a positive charge in the wire

2. An observer N sat on a negative charge moving at velocity v relative to the lab frame.

Thinking classically, the force on the test charge in frame P is 0, as the test charge is stationary,
and the electric field is 0 (equal density of positive and negative charges cancel by Gauss’ law),

F=qE+wxB)=0, (11)
so observer P does not see the test charge move.

In observer N’s frame, however, the test charge has velocity —v, and so feels force

F=qFE+vxB)#0. (12)
Two assumptions led to special relativity,

1. The laws of Physics are the same in all inertial frames

2. The velocity of light is the same in all inertial frames, and is independent of the velocity of
the source of the light or the observer.

Assumption 1 is not compatible with our two cases above. Einstein explained that there should be
a force on the test charge in observer P’s frame too, due to the length contraction of the moving
negative charges, meaning the positive and negative charges are no longer evenly distributed, and
there is a net electric field, the test charge feels a force pulling it towards the wire, consistent with
what observer IV sees.

There are to two general results of Special Relativity, for two inertial frames o and p,
Az, = —+ (13)

AT, = yAT,, (14)

where is the Lorentz contraction, and is the time dilation. o and p denote the length
and time in the observer and proper frame, where the observer is moving at speed v relative to the

proper frame, and
1

Uit

(15)



4 Conducting and Superconducting Materials

4.1 Extensive and Intensive Properties of Conductors

Ohm’s law can be written in terms of the electric field and current density,
where 0, = 1/p,, is the conductivity of the material.

In general, the movement of bulk charge density in a conductor is so great that we can assume, to
a good approximation, that there is no bulk charge density inside (can show this is a good approx-
imation as the characteristic lifetime (T =~ 10~""s for copper) is much lower than the frequency of
visible light).

4.2 The Drude Model

The electric field accelerates the charges which then collide with the scattering sites. The charge
carriers accelerate for an average time T, they then scatter and instantaneously stop. The fraction
of charge carriers that scatter in time ¢ is §¢/T, hence the momentum of the charge carriers at

t + 0t is given by
ot ot at
p(t+dt)=(1— ?)p(t) + (1 - ?)F(t)ét + F(t)ét?, (17)

where we have considered the initial momentum of the un-scattered charges, their additional mo-
mentum from the force, and the additional momentum to the scattered charges due to the force.
Setting dp = p(t + 0t) — p(t), for some infinitesimal dt,

op _ p(t)
o= T E. (18)

The Lorentz Force is given by
F=gE+vxB)=qE, (19)

where we have used that the magnitude of the electric field is a factor of ¢ greater than the magnetic
field. From this, we find the equation of motion for charge carriers,

m— =qFE — —. (20)
Note that we can interpret the second term as a frictional damping term.

Current density is given by

J = pv = Ngquv, (21)
subbing this into yields
dJ md
— = N¢’E - —. 22
m q - (22)



Using complex trial solutions for J and E, assuming they oscillate with the same frequency, we

find )

N
— 2 FE 23
m(t=1 —iw) (23)

J=0,E =
where tilde indicates complex fields. We can simplify this to find the real component of J,
N¢?

my/1+ (wt)?

the current density lags the E-field by wr.

J = cos (w(t — 7)) Ey, (24)

4.3 Dispersive and Ballistic Motion of Waves

A wave-packet is made up of many component plane waves. Each component plane wave has its
own wave-vector and phase velocity,
27 w

kreal = 7 and Uphase = 77—

. 2
kreal ( 5)

If we consider a wave packet built with a Gaussian distribution of wave-vectors, where kg is the
mean wave-vector, we can Taylor expand the dispersion relation,

w=f(k)=wo+alk—ko)+ B8/2(k —ko)* + ... (26)
where 5 52
0y w
a= and [ =_—5— (27)
Okreal k=ko aereal k=kq

and wq is the angular frequency of the 'most important’ component wave.
To second order, we get a solution whose peak moves through space as a function of time,
Tpeak = O, (28)

therefore we can equate « to the group velocity of the whole wave-packet,

Vgroup = O = alf:al k:ko. (29)
Waves are ballistic (wave-packet moves as one) when
and waves are dispersive (wave-packet spreads out over time) when
o= 88]:2:1 k=ko 7o (81)




4.4 Electromagnetic Waves Propagating Through Metals

In metals, the scattering time is short (compared to 1/f of the EM waves). In the limit T — 0,

becomes

~ N¢? - Ng’t - N¢?
j=— T p_1Tp_ , =297 (32)
m(t—1 —iw) m m
Maxwell I for a conducting material is
V-E=0. (33)

Taking the curl of Maxwell III, substituting Ohm’s law into Maxwell IV and combining gives

OFE 0’E
2
V°E = Hoon -+ Hof0 55 (34)
which is solved by a wave travelling in the x-direction. Inserting a trial solution, we find
k= posow? + iwpoon, (35)
so k is complex,
k = kreal + tkim- (36)

The real component ke, represents oscillations, the imaginary component ki, represents decay, to
understand this consider the form of the plane wave solution,

E — Eoei(ka:—wt) _ Eoei(krealac—wt)e—kimac. (37)

4.4.1 Dispersion Relation for a Highly Insulating Material

For a highly insulating material, o, — 0, so ppgow? > poonw and we find the dispersion relation
to be
k = wy/1oeo. (38)

Hence, w is linear in k and the wave is ballistic.

4.4.2 Dispersion Relation for a Highly Conducting Material

For a highly conducting material, o,, — 00, so the inverse is true, and we find the dispersion relation

to be

WHoOn
2

We find the solution for the E-field inside a good conductor by substituting & back into the plane
wave equation, we take the real (or imaginary, they just differ in phase) component, giving

k = kreal + tkim = (1 + Z) (39)

E = Egcos (% - wt) exp <—§) , (40)



3.0 T T T T

[ ]
o L
S| m
25 g | m —m— Phase velocity E
% H —m— Group velocity
) HE
ol ®
5 20 Il . 1
0 £
QL oy
% 15 u::% -
3 g
é\ 10 speed of light mavacuum%
(5] i c
o @
T ke
L z
05| k- 4
e
@
F=
o
00 1 1 1 1
0.0 0.5 1.0 1.5 2.0 25 3.0

Angular frequency (Multiples of mp)
Figure 1: The velocity of an electromagnetic wave in a plasma as a function of angular frequency.
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The exponential part causes the field to decay, showing that J is a decay length, known as the skin
depth for a good conductor.

where

4.5 Electromagnetic Waves Propagating Through Low Density Plasmas

In low density plasmas, scattering time T is long, so w > t~!. (23) becomes

.N 2
on = 24 (42)
Mew

and the dispersion relation can therefore be written
2

o (- (2)) w

where the angular plasma frequency is given by

o= (22 ) (44)

me€o

This has two distinct regimes,

1. w > wp: kis real and the EM waves propagate without attenuation throughout the plasma

2. w < wp: k is imaginary and we get attenuation due to the negative exponential term

10



Note the similarity with metals, in metals the reflectivity is constant (very high) until wy, the
plasma frequency, when it drops to near zero. In plasmas, waves below w), are attenuated.

We can find the phase and group velocities as usual, see Fig. [I] Phase velocity can be greater than
¢, as energy does not travel at the phase velocity.

4.6 Superconducting Materials

Superconductors are materials which, at temperatures below the critical temperature T¢ have zero
resistivity, we can think of them as having electrons condensed into a superconducting ground state.
A superconductor can be modelled as an enormous atom with a macroscopic wavefunction.

4.6.1 The First London Equation

If we assume electrons are not scattered, they each feel a force

F=m.=q(E+vxB)=~qE, (45)
using J = New, we find
me OJ 9 0J
— bl - L1
Ns€2 8t lu’o L at? ( )
where \? = ﬁ, and N is the density of superelectrons.
4.6.2 Second London Equation
Taking the curl of (L1]), we find
B = —g\iV x J. (L2)
Substituting Maxwell IV for J, where OF /0t = 0, and rearranging, we find
2 ].
L
which, for propagation in a semi-infinite slab starting at x = 0, has solutions of the form
B(x) = Boexp(—z/A) for x>0, (47)

which describes the Meissner state: the magnetic field is excluded from the bulk of all metallic
superconductors in low applied fields.

11



5 Dielectrics

5.1 Polarization

In dielectrics, all charges are attached to specific atoms or molecules, so all they can do is move a
bit within the atom or molecule. Applying an electric field E to a dielectric influences the charge
within the atoms, polarizing the atoms, such that each atom now has a tiny electric dipole moment

b,
p =qd, (48)
where d is the vector from the negative to the positive charge (points in the same direction as the

electric field).

The polarization of a dielectric, P, is the electric dipole moment per unit volume,
P = Np, (49)
where N is the number of electric dipoles per unit volume.

A polar dielectric contains randomly oriented permanent dipole moments, charge distribution is
asymmetric. An applied magnetic field aligns these dipoles. A non-polar dielectric contains a
symmetrical charge distribution, the applied field causes charge separation.

5.2 The Field of a Polarized Object

The potential, and hence the field, of a polarized object is the same as is produced by a surface

charge density
op=P-n, (50)
plus a volume charge density
Py = -V .- P. (51)

We can therefore consider a polarized object to be a distribution of bound charges; at the surface,
bound charges can be though of as the ends of polar molecules, in the volume, they can be thought
of as an accumulation of the ends of molecules due to a non-uniform polarization.

If the polarisation changes with time, the moving charges are equivalent to a current. The current
density is given by

oP
J = — 52
T (52)
5.3 The Electric Displacement Field
Within a dielectric, the total charge density can be written
P =Pyt pf, (53)

where p; is free charge density (any charge that is not a result of polarization).

12



We can write Maxwell I,

-V.P
v.E-PL _PTtPr_ e (54)
€0 €0 €0
where E is the total field. We can combine the two divergence terms, and find
V- (B + P) = py, (55)
we define the expression in parentheses as D),
D=¢FE+ P, (56)
this is known as the electric displacement field. We can therefore rewrite Maxwell I as
V-D=p;. (57)
This is useful as it allows us to work with p¢, which we can control.
The displacement current density is defined by
oD oE 0P
Jg=——=¢eg— + —. 58
1= T T o (58)
5.4 Electric Susceptibility and Relative Permittivity
Linear dielectrics obey the relation
P =¢gx.E, (59)

where Y. is the electric susceptibility of the medium. In such dielectrics, we can consider the
displacement field, D, which can be deduced directly from the free charge distribution,

D=coE+ P =¢yp(1+ xe)E =¢E, (60)
where € = ege,, and €, = 1 + Xe.

Relative permittivity is complex, with out of phase real and imaginary components.

6 Magnetic Materials

A material is magnetized when a magnetic field is applied to it, causing a net alignment of magnetic
dipoles. Some materials acquire a magnetisation parallel to B (paramagnets), and some opposite
to B (diamagnets). Ferromagnets retain their magnetization even after the external field has been
removed.

Consider a magnetic dipole to be a current loop with area S and current I, the magnetic dipole

moment m is given by

m = ISh, (61)

13



where n is the vector normal to the surface S.

The magnetic dipole moment per unit volume is the magnetization, M, and is given by
M = Nm, (62)
where N is the number of magnetic dipoles per unit volume.

Considering the vector potential of a single dipole moment, we can derive the total potential
contributions of two currents, surface and volume. The surface current density is given by

Ky, =M x 1, (63)
and the volume current density by

J, =V x M. (64)

This means that the potential (and hence also the field) of a magnetized object is the same as
would be produced by a volume current J through the material, plus a surface current K3 on the
boundary.

6.1 The Magnetic Field Strength

We can consider the current in a material to be the sum of the bound currents on the surface and
in the volume, as derived above, and free current,

J:Jb+Jf. (65)

In view of this, we can write Ampere’s law as
1
—(VxB)=J=Jy+J;=(Vx M)+ Jy, (66)
Ho
collecting together the curls, we find
1
V x <B—M> = Jy. (67)
Ho
We define the quantity in parenthesis as the magnetic field strength,
1
=—B-M. (68)
Ho

We can now rewrite Maxwell IV in terms of D, H, and py,

oD
VxH=J;+ 2
% It % (69)

:Jf+Jd

Essentially, H is useful as it allows us to consider the field due to the free charges alone.

14



6.2 Magnetization in Linear Media

For linear media, we can relate the magnetisation to the magnetic field strength in terms of the
magnetic susceptibility,
M =, H. (70)

A little manipulation leads us to another relation,
B = po(1 +xm)H = pH, (71)

where we have defined
1= oy, and i = 1+ X, (72)

w is the permeability of the material.

6.3 Alternative Form of Maxwell’s Equations

We can rewrite Maxwell’s equations using these new definitions,

V-D=p; (73)
V-B=0 (74)
0B
E=——
V x 2y (75)
D
V><H=Jf+aat (76)

7 Radiation and Communication

7.1 Poynting’s Vector

The instantaneous power per unit area for electromagnetic waves is given by Poynting’s vector, IV,
where

N=E x H. (77)

We find the total instantaneous power flowing through an arbitrary surface bounding the source of
the radiation by integrating Poynting’s vector over the surface.

Time averaged power per unit area for a periodic field is found (shockingly) by time averaging
Poynting’s vector,

1 to+T
Nowg = 7 /t Ndt, (78)
0

where T' = 27 /w gives the period of the field.

15



7.2 Potentials

We define the magnetic vector potential, A, as

B=VxA (79)

We define the electrostatic potential, V', as

0A
E=-VV - — 80
at b ( )
which reduces to
E=-VV (81)

in time-independent situations.

Note that, by Helmholtz’s Theorem, A is not fully specified by its definition, we can add to it any
vector whose curl is 0. Similarly, we can add to V' any function whose gradient is 0. We impose
the Lorentz condition to constrain them,

ov
V- -A= —,M[‘_)cg[)g. (82)

We can rewrite Maxwell’s equations in terms of these potentials, and each satisfy their own wave
equation,

o’V p

2

A v Ve == 83

\% + HoE0 8t2 E()’ ( )
0’A

VA + g0 5 = piod- (84)

ot

8 Hertzian Dipole

8.1 Near and Far Electromagnetic field

Consider an alternating electric dipole moment equivalent to a length 6l of wire in which a time
dependent alternating current I(t) is flowing.

1(t)8 = wp(t). (85)

From electrostatics, we know —VV = E, so we know the solution for

V. E=-vy=2 (36)

is




We can start to solve the complex wave equation for A by considering the static solutions to

—V2A =y d, (88)
by inspection, we find
~ ,U,()IO(Sl i (kr—wt)
A — URT—W
drr © ’ (89)

where I = Iy exp(—iwt).

Changing to spherical coordinates, and using B = V x A, we find an expression for the magnetic

field,
>, _ MOIO(SZ o . i(kr—wt) 7
B(r,0,¢,t) = 2 (1 —ikr)sin(f)e o. (90)

In the near field, kr < 1, and we get real fields

Iyl A
Bieor (1,0, 0,t) = HoZo sin(0) cos(kr — wt) . (91)
472
In the far field, kr > 1, and we get
1ol .
Biar(r,0,6,1) = P07k sin(6) sin(kr — wt) . (92)
r

Substituting a plane wave solution for E into Maxwell IV, setting J to be 0, we find
1

HoEow

E = V x B, (93)

giving us an expression for the electric field,

. . . 2 2 .
B polodl w(i + kr) cos(f) gilkr—wt) polodl w(i + kr — ik*r )sm(é))ei(,ﬂ_wt) -

6. 94
2 k23 A k273 (94)

This has real near and far field solutions given by

1 I A
Encar = _“;ﬂigl % cos(0) sin(kr — wt)i — “iﬂﬁgl % sin(6) sin(kr — wt)8, (95)
Iyol .
Eg, = Ho%o wsin() sin(kr — wt)0. (96)
A7y

In the near field, EM waves originate from the quasi-static field produced by the moving charge.
E,car and By, are 7/2 out of phase as they reach their maxima when charge separation is highest
(this occurs when current is 0) and when current is highest respectively.

In the far field, both fields are tangential to the surface of a sphere centred on the dipole, they are
associated with the acceleration of the charges.

17



8.2 Radiation and Antennae

The oscillatory nature of the dipole produces packets of EM radiation propagating away from it.
They point in the direction of Poynting’s vector, and carry energy away.

Beam width is defined as the angle between half-power directions. The angular dependency of the
instantaneous radiated power is given by the magnitude of Poynting’s vector evaluated from our
expressions for Fy,,. and By, for time averaged power simply take the time average.

There are two types of antennae, electric and magnetic dipole antennae.

An electric dipole antenna is a length of conducting (often copper) wire connected to a voltmeter,
incident EM radiation has an alternating electric field which induces an alternating current in the
antenna.

A magnetic dipole antenna is a loop of conducting (again, often copper) wire connected to a
voltmeter. The alternating magnetic flux through the loop due to the magnetic field of the radiation
induces an alternating current in the loop.

9 Static Fields and Electromagnetic Waves Crossing Interfaces

9.1 Static Boundary Conditions Across the Interfacial Plane Between Two Di-
electrics

For an insulating dielectric material, Maxwell I can be written in terms of the displacement field,
V-D = p;. (97)
Integrating both sides over the volume of a cylinder on the border between two dielectrics, with

one face on each side, we have
/ V. DAV =0, (98)
1%

where we have used py = 0 in an insulating dielectric.

Applying the divergence theorem, and considering the displacement field on each surface, we have
D, -dS + Dy -dS =0, (99)

Sl SQ
where the two surfaces are the two faces. This implies that the components of the displacement

field orthogonal to the interfacial plane must be equal in each medium,

Dy = Do, (100)

Similarly, taking the surface integral of Maxwell III over the surface S bounded by a rectangular

path on the interface of the two surfaces gives
0B

/VxE.dsz— 22 .4s. (101)

18



Rewriting with Stoke’s theorem, we find

9
E-dil=—-—— | B-dS. 102
f d (%/ a8 (102)

Taking the limit that the height of the path tends to 0, the magnetic flux through the rectangle
tends to 0 and the only non-0 terms in the path integral are those along the two long lengths of
the rectangle, giving

By =By, (103)
equivalently saying that, for the interface between two dielectrics, the displacement field or-
thogonal to the interfacial pane, and the electric field parallel to the interfacial plane
are continuous.

9.2 Static Boundary Conditions Across the Interfacial Plane Between Two
Magnetic Materials

Following a similar process to the above, we find Maxwell’s equations require that the magnetic
field orthogonal to the interfacial plane, and the field strength parallel to the interfacial
plane, are continuous.

Bi| =By . (104)
Hy = Hy, (105)

Essentially, we can easily derive these boundary conditions by considering which fields will give
a divergence or curl that is 0 at the boundary, then integrating and applying the Divergence or
Stoke’s theorem in the limit that the rectangle/cylinder’s height goes to 0.

10 Optics

10.1 The Laws of Geometric Optics

An electromagnetic wave in medium 1 incident on medium 2 is partially reflected and partially
transmitted. We can express the incident, reflected and transmitted waves generally as

Ei(r, t) = E(]Z‘ expi(k:i N wz-t) (106)
E,(r,t) = Eprexpi(k, - 7 — wyt) (107)
Et(’l“, t) = EQt GXpi(kt r— wtt), (108)

where r is any position vector along the intersection of the incidence and interfacial planes.

The boundary conditions we derived above in ({103)) lead to
Ei//—i-ET//:Et// (109)

19



at all points in the interfacial plane at all t.

Evaluating at r = 0, we find that
Wi = Wy = Ws. (110)

Evaluating at t = 0, we find from considering reflection that
ki) = kry s (111)

and that
0; =0,, (112)

this is the 1st law of geometric optics.
Considering transmission, we find the 2nd law, Snell’s law
n; sin 6; = ny sin 6y, (113)

and the 3rd law,
k;sin@; = k, sin 0, = k; sin 6;. (114)

10.2 Fresnel’s Equations

Quantify the fraction of the E-field that is transmitted and the fraction that is reflected by spitting
the incident field into components normal and parallel to the plane of incidence.

10.2.1 Normal to the plane of incidence

Applying the boundary conditions for H and FE, we find

Ey. njcosf; — ngcos b,

= 115
EO’L' n; COS (91 + ¢ COS et ( )
Eo _ 2n; cos 0; (116)
Eo; njcosb; + nycosl;
10.2.2 Parallel to the plane of incidence
Eor  m;cos b —nycosb; (117)
Eo;  n;cosb; + ngcosb;
Eo: _ 2n; cos 0; (118)

Eo;  njcosp 4+ ngcosb;

20



10.2.3 The Brewster Angle and Critical Angle

At the Brewster angle, the reflected wave is fully polarised normal to the plane of incidence, the
reflection coefficient parallel to the plane of incidence is zero,

fp = arctan it (119)
7

At and above the critical angle, there is only total internal reflection of the wave,

Oc = arcsin t (120)
n;

10.3 Coefficients of Reflection and Transmission

For a non-magnetic non-conducting dielectric, we use Poynting’s vector to calculate the time-
averaged power per unit area incident on the interface,

1
1 1 2

NZ’ = —EOZHOZ COS 92 = — i Egl COS 9@', (]‘21)
2 2 \ o

note that the factor of cosf; occurs because the interface is not in general perpendicular to the
direction the wave is travelling (this affects the power per unit area).

Similarly, for the reflected wave,

1
1 &1 2
N, = 5 </~LO> E2 cosb,, (122)
and for the transmitted wave,
1
1 g2 2 2
Ny=—-|—) E, 0;. 123
t 2(#0) ot COS Uy (123)

The reflection and transmission coefficients are defined as the fraction of incident power that is
reflected or transmitted, respectively, so

Nr EOT 2
R=—= 124
v (F) 120
1
TE%: £ inétcosHt:@Eioztcosﬁt‘ (125)
N; €1 Eg; cos0;  ny Eg; cost;
By conservation of energy,
R+T=1. (126)

Fresnel’s equations show that, for highly conducting materials, reflection coefficients are high.
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11 Waveguides

Using electromagnetic waves in waveguides is a very efficient way of transmitting large amounts
of power. Waveguides are hollow conducting tubes made of highly conducting materials - often
copper, but in some cases superconductors.

We consider a hollow rectangular waveguide (for simplicity) carrying a transverse electric wave.
Transverse electromagnetic waves cannot exist in hollow waveguides.

If the waveguide is a good conductor, we can assume that for steady state (no dissipation) solutions,
there is no E-field parallel to the edges of the waveguide. From Maxwell’s equations, and this
boundary condition, we can derive the dispersion relation,

2 2,2
9 W mem
As with plasma, we identify a lowest cut-off angular frequency (where k = 0), given by
e
We = ;, (128)

below this angular frequency waves are reflected off the waveguide and absorbed by the conducting
walls - k£ is imaginary and the wave is attenuated.

The magnetic field associated with the electric field has both transverse and longitudinal compo-
nents (consider the wave bouncing off the walls).

22



	Maxwell's Equations
	Two Useful Theorems

	Electromagnetic Waves in a Vacuum
	Plane Waves
	The Continuity Equation

	Special Relativity
	Conducting and Superconducting Materials
	Extensive and Intensive Properties of Conductors
	The Drude Model
	Dispersive and Ballistic Motion of Waves
	Electromagnetic Waves Propagating Through Metals
	Dispersion Relation for a Highly Insulating Material
	Dispersion Relation for a Highly Conducting Material

	Electromagnetic Waves Propagating Through Low Density Plasmas
	Superconducting Materials
	The First London Equation
	Second London Equation


	Dielectrics
	Polarization
	The Field of a Polarized Object
	The Electric Displacement Field
	Electric Susceptibility and Relative Permittivity

	Magnetic Materials
	The Magnetic Field Strength
	Magnetization in Linear Media
	Alternative Form of Maxwell's Equations

	Radiation and Communication
	Poynting's Vector
	Potentials

	Hertzian Dipole
	Near and Far Electromagnetic field
	Radiation and Antennae

	Static Fields and Electromagnetic Waves Crossing Interfaces
	Static Boundary Conditions Across the Interfacial Plane Between Two Dielectrics
	Static Boundary Conditions Across the Interfacial Plane Between Two Magnetic Materials

	Optics
	The Laws of Geometric Optics
	Fresnel's Equations
	Normal to the plane of incidence
	Parallel to the plane of incidence
	The Brewster Angle and Critical Angle

	Coefficients of Reflection and Transmission

	Waveguides

